Capacity Analysis in Different Systems Exploiting Mobility of VANETs

Capacity Analysis in Different Systems Exploiting Mobility of VANETs
Author :
Publisher :
Total Pages : 131
Release :
ISBN-10 : OCLC:926097442
ISBN-13 :
Rating : 4/5 (42 Downloads)

Book Synopsis Capacity Analysis in Different Systems Exploiting Mobility of VANETs by : Miao Wang

Download or read book Capacity Analysis in Different Systems Exploiting Mobility of VANETs written by Miao Wang and published by . This book was released on 2015 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving road safety and traffic efficiency has been a long-term endeavor for not only government but also automobile industry and academia. After the U.S. Federal Communication Commission (FCC) allocated a 75 MHz spectrum at 5.9 GHz for vehicular communications, the vehicular ad hoc network (VANET), as an instantiation of the mobile ad hoc network (MANET) with much higher node mobility, opens a new door to combat the road fatalities. In VANETs, a variety of applications ranging from safety related (e.g. emergency report, collision warning) to non-safety-related (e.g. infotainment and entertainment) can be enabled by vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications. However, the flourish of VANET still hinges fully understanding and managing the challenges that the public concerns, for example, capacity and connectivity issues due to the high mobility of vehicles. In this thesis, we investigate how vehicle mobility can impact the performance in three important VANET-involved systems, i.e., pure VANET, VANET-enhanced intelligent transportation systems (ITS), and fast electric vehicle (EV) charging systems. First, in pure VANET, our work shows that the network data-traffic can be balanced and the network throughput can be improved with the help of the vehicle mobility differentiation. Furthermore, leveraging vehicular communications of VANETs, the mobility-aware real-time path planning can be designed to smooth the vehicle traffic in an ITS, through which the traffic congestion in urban scenarios can be effectively relieved. In addition, with the consideration of the range anxiety caused by mobility, coordinated charging can provide efficient charging plans for electric vehicles (EVs) to improve the overall energy utilization while preventing an electric power system from overloading. To this end, we try to answer the following questions: Q1) How to utilize mobility characteristics of vehicles to derive the achievable asymptotic throughput capacity in pure VANETs? Q2) How to design path planning for mobile vehicles to maximize spatial utility based on mobility differentiation, in order to approach vehicle-traffic capacity in a VANET-enhanced ITS? Q3) How to develop the charging strategies based on mobility of electric vehicles to improve the electricity utility, in order to approach load capacities of charging stations in VANET-enhanced smart grid? To achieve the first objective, we consider the unique features of VANETs and derive the scaling law of VANETs throughput capacity in the data uploading scenario. We show that in both free-space propagation and non-free-space propagation environments, the achievable throughput capacity of individual vehicle scales as $\Theta (\frac{1}{{\log n}}) with $n$ denoting the population of a set of homogenous vehicles in the network. To achieve the second objective, we first establish a VANET-enhanced ITS, which incorporates VANETs to enable real-time communications among vehicles, road side units (RSUs), and a vehicle-traffic server in an efficient way. Then, we propose a real-time path planning algorithm, which not only improves the overall spatial utilization of a road network but also reduces average vehicle travel cost for avoiding vehicles from getting stuck in congestion. To achieve the third objective, we investigate a smart grid involved EV fast charging system, with enhanced communication capabilities, i.e., a VANET-enhanced smart grid. It exploits VANETs to support real-time communications among RSUs and highly mobile EVs for real-time vehicle mobility information collection or charging decision dispatch. Then, we propose a mobility-aware coordinated charging strategy for EVs, which not only improves the overall energy utilization while avoiding power system overloading, but also addresses the range anxieties of individual EVs by reducing the average travel cost. In summary, the analysis developed and the scaling law derived in $Q1$ of this thesis is practical and fundamental to reveal the relationship between the mobility of vehicles and the network performance in VANETs. And the strategies proposed in $Q2$ and $Q3$ of the thesis are meaningful in exploiting/leveraging the vehicle mobility differentiation to improve the system performance in order to approach the corresponding capacities.


Capacity Analysis in Different Systems Exploiting Mobility of VANETs Related Books

Capacity Analysis in Different Systems Exploiting Mobility of VANETs
Language: en
Pages: 131
Authors: Miao Wang
Categories:
Type: BOOK - Published: 2015 - Publisher:

DOWNLOAD EBOOK

Improving road safety and traffic efficiency has been a long-term endeavor for not only government but also automobile industry and academia. After the U.S. Fed
Integral Transformations, Operational Calculus and Their Applications
Language: en
Pages: 220
Authors: Hari Mohan Srivastava
Categories: Science
Type: BOOK - Published: 2021-01-20 - Publisher: MDPI

DOWNLOAD EBOOK

This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on
Advances in Vehicular Networks
Language: en
Pages: 138
Authors: Barbara M. Masini
Categories: Technology & Engineering
Type: BOOK - Published: 2021-01-06 - Publisher: MDPI

DOWNLOAD EBOOK

Connected and automated vehicles have revolutionized the way we move, granting new services on roads. This Special Issue collects contributions that address rel
Capacity Analysis of Vehicular Communication Networks
Language: en
Pages: 91
Authors: Ning Lu
Categories: Computers
Type: BOOK - Published: 2013-09-21 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. M
IoT and Cloud Computing Advancements in Vehicular Ad-Hoc Networks
Language: en
Pages: 339
Authors: Rao, Ram Shringar
Categories: Computers
Type: BOOK - Published: 2020-03-20 - Publisher: IGI Global

DOWNLOAD EBOOK

The optimization of traffic management operations has become a considerable challenge in today’s global scope due to the significant increase in the number of