Dictionary of Weighing Terms
Author | : Roland Nater |
Publisher | : Springer Science & Business Media |
Total Pages | : 275 |
Release | : 2009-10-03 |
ISBN-10 | : 9783642020148 |
ISBN-13 | : 3642020143 |
Rating | : 4/5 (48 Downloads) |
Download or read book Dictionary of Weighing Terms written by Roland Nater and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Dictionary of Weighing Terms is a comprehensive practical guide to the terminology of weighing for all users of weighing instruments in industry and science. It explains more than 1000 terms of weighing technology and related areas; numerous illustrations assist understanding. The Dictionary of Weighing Terms is a joint work of the German Federal Institute of Physics and Metrology (PTB) and METTLER TOLEDO, the weighing instruments manufacturer. Special thanks go to Peter Brandes, Michael Denzel, and Dr. Oliver Mack of PTB, and to Richard Davis of BIPM, who with their technical knowledge have contributed to the success of this work. The Dictionary contains terms from the following fields: fundamentals of weighing, application and use of weighing instruments, international standards, legal requirements for weighing instruments, weighing accuracy. An index facilitates rapid location of the required term. The authors welcome suggestions and corrections at www.mt.com/w eighing-terms. Braunschweig (DE) and Greifensee (CH), The Authors Summer 2009 Foreword Since its founding in 1875, the International Bureau of Weights and Measures (BIPM) has had a unique role in mass metrology. The definition of the kilogram depends on an artefact conserved and used within our laboratories. The mass embodied in this - tefact defines the kilogram, and this information is disseminated throughout the world to promote uniformity of measurements. Although the definition of the kilogram may change in the re- tively near future, reflecting the success of new technologies and new requirements, the task of ensuring world-wide uniformity of mass measurements will remain.