Introduction to Real Analysis
Author | : William C. Bauldry |
Publisher | : John Wiley & Sons |
Total Pages | : 279 |
Release | : 2009-07-14 |
ISBN-10 | : 9780470371367 |
ISBN-13 | : 0470371366 |
Rating | : 4/5 (67 Downloads) |
Download or read book Introduction to Real Analysis written by William C. Bauldry and published by John Wiley & Sons. This book was released on 2009-07-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, Introduction to Real Analysis: An Educational Approach presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. Introduction to Real Analysis: An Educational Approach is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.