Bearing Dynamic Coefficients in Rotordynamics
Author | : Lukasz Brenkacz |
Publisher | : John Wiley & Sons |
Total Pages | : 189 |
Release | : 2021-03-29 |
ISBN-10 | : 9781119759249 |
ISBN-13 | : 1119759242 |
Rating | : 4/5 (49 Downloads) |
Download or read book Bearing Dynamic Coefficients in Rotordynamics written by Lukasz Brenkacz and published by John Wiley & Sons. This book was released on 2021-03-29 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to bearing dynamic coefficients in rotordynamics that includes various computation methods Bearing Dynamic Coefficients in Rotordynamics delivers an authoritative guide to the fundamentals of bearing and bearing dynamic coefficients containing various computation methods. Three of the most popular and state-of-the-art methods of determining coefficients are discussed in detail. The computation methods covered include an experimental linear method created by the author, and numerical linear and nonlinear methods using the finite element method. The author—a renowned expert on the topic—presents the results and discusses the limitations of the various methods. Accessibly written, the book provides a clear analysis of the fundamental phenomena in rotor dynamics and includes many illustrations from numerical analysis and the results of the experimental research. Filled with practical examples, the book also includes a companion website hosting code used to calculate the dynamic coefficients of journal bearings. This important book: Covers examples of different computation methods, presents results, and discusses limitations of each Reviews the fundamentals of bearing and bearing dynamic coefficients Includes illustrations from the numerical analysis and results of the experimental research Offers myriad practical examples and a companion website Written for researchers and practitioners working in rotordynamics, Bearing Dynamic Coefficients in Rotordynamics will also earn a place in the libraries of graduate students in mechanical and aerospace engineering who seek a comprehensive treatment of the foundations of this subject.