Practical Machine Learning in R

Practical Machine Learning in R
Author :
Publisher : John Wiley & Sons
Total Pages : 467
Release :
ISBN-10 : 9781119591573
ISBN-13 : 1119591570
Rating : 4/5 (73 Downloads)

Book Synopsis Practical Machine Learning in R by : Fred Nwanganga

Download or read book Practical Machine Learning in R written by Fred Nwanganga and published by John Wiley & Sons. This book was released on 2020-04-10 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.


Practical Machine Learning in R Related Books

Deep Learning for Coders with fastai and PyTorch
Language: en
Pages: 624
Authors: Jeremy Howard
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with
Practical Deep Learning
Language: en
Pages: 463
Authors: Ronald T. Kneusel
Categories: Computers
Type: BOOK - Published: 2021-02-23 - Publisher: No Starch Press

DOWNLOAD EBOOK

Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been
Practical Machine Learning with Python
Language: en
Pages: 545
Authors: Dipanjan Sarkar
Categories: Computers
Type: BOOK - Published: 2017-12-20 - Publisher: Apress

DOWNLOAD EBOOK

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the
Data Mining
Language: en
Pages: 665
Authors: Ian H. Witten
Categories: Computers
Type: BOOK - Published: 2011-02-03 - Publisher: Elsevier

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advic
Practical Machine Learning
Language: en
Pages: 468
Authors: Sunila Gollapudi
Categories: Computers
Type: BOOK - Published: 2016-01-30 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wid