Braid and Knot Theory in Dimension Four
Author | : Seiichi Kamada |
Publisher | : American Mathematical Soc. |
Total Pages | : 329 |
Release | : 2002 |
ISBN-10 | : 9780821829691 |
ISBN-13 | : 0821829696 |
Rating | : 4/5 (91 Downloads) |
Download or read book Braid and Knot Theory in Dimension Four written by Seiichi Kamada and published by American Mathematical Soc.. This book was released on 2002 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Braid theory and knot theory are related via two famous results due to Alexander and Markov. Alexander's theorem states that any knot or link can be put into braid form. Markov's theorem gives necessary and sufficient conditions to conclude that two braids represent the same knot or link. Thus, one can use braid theory to study knot theory and vice versa. In this book, the author generalizes braid theory to dimension four. He develops the theory of surface braids and applies it tostudy surface links. In particular, the generalized Alexander and Markov theorems in dimension four are given. This book is the first to contain a complete proof of the generalized Markov theorem. Surface links are studied via the motion picture method, and some important techniques of this method arestudied. For surface braids, various methods to describe them are introduced and developed: the motion picture method, the chart description, the braid monodromy, and the braid system. These tools are fundamental to understanding and computing invariants of surface braids and surface links. Included is a table of knotted surfaces with a computation of Alexander polynomials. Braid techniques are extended to represent link homotopy classes. The book is geared toward a wide audience, from graduatestudents to specialists. It would make a suitable text for a graduate course and a valuable resource for researchers.