DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
Author :
Publisher : BALIGE PUBLISHING
Total Pages : 353
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI by : Vivian Siahaan

Download or read book DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-08-09 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, Data Science Workshop focused on Liver Disease Classification and Prediction, we embarked on a comprehensive journey through various stages of data analysis, model development, and performance evaluation. The workshop aimed to utilize Python and its associated libraries to create a Graphical User Interface (GUI) that facilitates the classification and prediction of liver disease cases. Our exploration began with a thorough examination of the dataset. This entailed importing necessary libraries such as NumPy, Pandas, and Matplotlib for data manipulation, visualization, and preprocessing. The dataset, representing liver-related attributes, was read and its dimensions were checked to ensure data integrity. To gain a preliminary understanding, the dataset's initial rows and column information were displayed. We identified key features such as 'Age', 'Gender', and various biochemical attributes relevant to liver health. The dataset's structure, including data types and non-null counts, was inspected to identify any potential data quality issues. We detected that the 'Albumin_and_Globulin_Ratio' feature had a few missing values, which were subsequently filled with the median value. Our exploration extended to visualizing categorical distributions. Pie charts provided insights into the proportions of healthy and unhealthy liver cases among different gender categories. Stacked bar plots further delved into the connections between 'Total_Bilirubin' categories and the prevalence of liver disease, fostering a deeper understanding of these relationships. Transitioning to predictive modeling, we embarked on constructing machine learning models. Our arsenal included a range of algorithms such as Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. The data was split into training and testing sets, and each model underwent rigorous evaluation using metrics like accuracy, precision, recall, F1-score, and ROC-AUC. Hyperparameter tuning played a pivotal role in model enhancement. We leveraged grid search and cross-validation techniques to identify the best combination of hyperparameters, optimizing model performance. Our focus shifted towards assessing the significance of each feature, using techniques such as feature importance from tree-based models. The workshop didn't halt at machine learning; it delved into deep learning as well. We implemented an Artificial Neural Network (ANN) using the Keras library. This powerful model demonstrated its ability to capture complex relationships within the data. With distinct layers, activation functions, and dropout layers to prevent overfitting, the ANN achieved impressive results in liver disease prediction. Our journey culminated with a comprehensive analysis of model performance. The metrics chosen for evaluation included accuracy, precision, recall, F1-score, and confusion matrix visualizations. These metrics provided a comprehensive view of the model's capability to correctly classify both healthy and unhealthy liver cases. In summary, the Data Science Workshop on Liver Disease Classification and Prediction was a holistic exploration into data preprocessing, feature categorization, machine learning, and deep learning techniques. The culmination of these efforts resulted in the creation of a Python GUI that empowers users to input patient attributes and receive predictions regarding liver health. Through this workshop, participants gained a well-rounded understanding of data science techniques and their application in the field of healthcare.


DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Related Books

DATA SCIENCE WORKSHOP: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
Language: en
Pages: 353
Authors: Vivian Siahaan
Categories: Computers
Type: BOOK - Published: 2023-08-09 - Publisher: BALIGE PUBLISHING

DOWNLOAD EBOOK

In this project, Data Science Workshop focused on Liver Disease Classification and Prediction, we embarked on a comprehensive journey through various stages of
The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI
Language: en
Pages: 1574
Authors: Vivian Siahaan
Categories: Computers
Type: BOOK - Published: - Publisher: BALIGE PUBLISHING

DOWNLOAD EBOOK

Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 caus
THE APPLIED DATA SCIENCE WORKSHOP: Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI
Language: en
Pages: 357
Authors: Vivian Siahaan
Categories: Computers
Type: BOOK - Published: 2023-07-19 - Publisher: BALIGE PUBLISHING

DOWNLOAD EBOOK

The Applied Data Science Workshop on Prostate Cancer Classification and Recognition using Machine Learning and Deep Learning with Python GUI involved several st
Artificial Intelligence in Medical Imaging
Language: en
Pages: 369
Authors: Erik R. Ranschaert
Categories: Medical
Type: BOOK - Published: 2019-01-29 - Publisher: Springer

DOWNLOAD EBOOK

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling rea
Machine Learning with Health Care Perspective
Language: en
Pages: 418
Authors: Vishal Jain
Categories: Technology & Engineering
Type: BOOK - Published: 2020-03-09 - Publisher: Springer Nature

DOWNLOAD EBOOK

This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning resea