Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains
Author | : Michail Borsuk |
Publisher | : Elsevier |
Total Pages | : 538 |
Release | : 2006-01-12 |
ISBN-10 | : 9780080461731 |
ISBN-13 | : 0080461735 |
Rating | : 4/5 (31 Downloads) |
Download or read book Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains written by Michail Borsuk and published by Elsevier. This book was released on 2006-01-12 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.