Fundamentals of Mathematics - Algebra - I 2e

Fundamentals of Mathematics - Algebra - I 2e
Author :
Publisher : G.K Publications Pvt.Limited
Total Pages : 902
Release :
ISBN-10 : 8193975863
ISBN-13 : 9788193975862
Rating : 4/5 (63 Downloads)

Book Synopsis Fundamentals of Mathematics - Algebra - I 2e by : Sanjay Mishra

Download or read book Fundamentals of Mathematics - Algebra - I 2e written by Sanjay Mishra and published by G.K Publications Pvt.Limited. This book was released on 2019 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Fundamentals of Mathematics - Algebra - I 2e Related Books

Fundamentals of Mathematics - Algebra - I 2e
Language: en
Pages: 902
Authors: Sanjay Mishra
Categories: Study Aids
Type: BOOK - Published: 2019 - Publisher: G.K Publications Pvt.Limited

DOWNLOAD EBOOK

A Book of Abstract Algebra
Language: en
Pages: 402
Authors: Charles C Pinter
Categories: Mathematics
Type: BOOK - Published: 2010-01-14 - Publisher: Courier Corporation

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatm
Algebra and Trigonometry
Language: en
Pages: 1564
Authors: Jay P. Abramson
Categories: Algebra
Type: BOOK - Published: 2015-02-13 - Publisher:

DOWNLOAD EBOOK

"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instru
College Algebra
Language: en
Pages: 892
Authors: Jay Abramson
Categories: Mathematics
Type: BOOK - Published: 2018-01-07 - Publisher:

DOWNLOAD EBOOK

College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course
Basic Algebra
Language: en
Pages: 762
Authors: Anthony W. Knapp
Categories: Mathematics
Type: BOOK - Published: 2007-07-28 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring