Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R
Author | : Peter Poláčik |
Publisher | : American Mathematical Soc. |
Total Pages | : 100 |
Release | : 2020-05-13 |
ISBN-10 | : 9781470441128 |
ISBN-13 | : 1470441128 |
Rating | : 4/5 (28 Downloads) |
Download or read book Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R written by Peter Poláčik and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.